Numerical solutions of Black-Scholes integro-differential equations with convergence analysis
نویسندگان
چکیده
منابع مشابه
Convergence Analysis of the Spectral Methods for Weakly Singular Volterra Integro-Differential Equations with Smooth Solutions
The theory of a class of spectral methods is extended to Volterra integrodifferential equations which contain a weakly singular kernel (t − s)−μ with 0 < μ < 1. In this work, we consider the case when the underlying solutions of weakly singular Volterra integro-differential equations are sufficiently smooth. We provide a rigorous error analysis for the spectral methods, which shows that both th...
متن کاملNumerical solutions of nonlinear fuzzy Fredholm integro-differential equations of the second kind
In this paper, we use parametric form of fuzzy number, then aniterative approach for obtaining approximate solution for a classof nonlinear fuzzy Fredholmintegro-differential equation of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the nonlinear fuzzy integro-differential equations by an it...
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملConvergence analysis of the sinc collocation method for integro-differential equations system
In this paper, a numerical solution for a system of linear Fredholm integro-differential equations by means of the sinc method is considered. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. The exponential convergence rate $O(e^{-k sqrt{N}})$ of the method is proved. The analytical results are illustrated with numerical examp...
متن کاملPositive Solutions of Volterra Integro–differential Equations
We present some sufficient conditions such that Eq. (1) only has solutions with zero points in (0,∞). Moreover, we also obtain some conditions such that Eq. (1) has a positive solution on [0,+∞). The motivation of this work comes from the work of Ladas, Philos and Sficas [5]. They discussed the oscillation behavior of Eq. (1) when P (t, s) = P (t− s) and g(t) = t. They obtained a necessary and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2019
ISSN: 1303-6149
DOI: 10.3906/mat-1812-89